
Commitment vs. Flexibility�

Manuel Amadory

Ivan Werningz

George-Marios Angeletosx

February 23, 2004

Abstract

This paper studies the optimal trade-o¤ between commitment and �exibil-

ity in an intertemporal consumption/savings choice model. Individuals expect

to receive relevant information regarding their own situation and tastes - gener-

ating a value for �exibility � but also expect to su¤er from temptations with or

without self-control � generating a value for commitment. The model combines

the representations of preferences for �exibility introduced by Kreps (1979)

with its recent antithesis for commitment proposed by Gul and Pesendorfer

(2001), or alternatively, the hyperbolic discounting model. We set up and solve

a mechanism design problem that optimizes over the set of consumption/saving

options available to the individual each period. We characterize the conditions

under which the solution takes a simple threshold form where minimum savings

policies are optimal. We also show that in these cases the optimal commitment

device can be implemented sequentially by allowing the agent to manage a

portfolio of liquid and illiquid assets.
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Introduction

A commonly articulated justi�cation for government involvement in retirement in-

come is the belief that an important fraction of the population would save inade-

quately if left to their own devices (e.g. Diamond, 1977). From the workers perspec-

tive most pension systems, pay-as-you-go and capitalized systems alike, e¤ectively

impose a minimum saving requirement. One purpose of this paper is to see if such

minimum saving policies are optimal in a model where agents su¤er from the temp-

tation to �over-consume�.

More generally, if people su¤er from temptation and self-control problems, what

should be done to help them? Current models emphasizing these problems lead to

a simple and extreme answer: it is optimal to completely remove all the individual�s

future choices. In particular, if the temptation is for present consumption, as is com-

monly assumed in the intertemporal framework, it is desirable to commit individuals

to a particular consumption-savings path, removing all future consumption-savings

choices. In these models the preference for commitment devices is simply overwhelm-

ing.

This paper studies the non-trival design of optimal commitment devices by mod-

eling situations where removing all individual choices is not necessarily optimal. We

introduce a value for �exibility and study the resulting trade-o¤ with commitment.

Let us brie�y describe what we mean by these two concepts and how we formalize

them.

Commitment entails an ex-ante reduction in the options available to an individual

ex-post. Models with time-inconsistent preferences solved as a competitive game, as

in Strotz (1956), were the �rst to formalize a value for commitment. In particular,

in the consumption/saving framework the hyperbolic discounting model has proven

useful for studying the e¤ects of a temptation to �over-consume� and the resulting

desirability of certain commitment devices (e.g. Phelps and Pollack, 1968, Laibson,

1997).

In a series of recent papers Gul and Pesendorfer (2001, 2002a,b) have given pref-

erences that value commitment an axiomatic foundation and derived a useful rep-

resentation theorem. In their representation the individual su¤ers from temptations

and may possibly exert costly self-control. Commitment is valued because it avoids
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temptations that may either adversely a¤ect choices or require exerting costly self-

control.

On the opposite side of the spectrum, Kreps (1979) provided an axiomatic founda-

tion for a preference for �exibility, preferences that place an ex-ante value on having

a large set of options available for the individual ex-post. Kreps� representation the-

orem shows that such preferences can be represented by including taste shocks into

an expected utility framework.

Our model incorporates a preference for �exibility and for commitment by com-

bining Kreps� representation with both the Gul and Pesendorfer temptation model

and the time-inconsistent preference framework.1 The individual has preferences over

random consumption streams. Agents su¤er from the temptation for higher present

consumption. In addition, each period a taste shock is realized that a¤ects the in-

dividual�s desire for current vs. future consumption. Importantly, taste shocks are

assumed to be private information.

The informational asymmetry introduces a trade-o¤ between commitment and

�exibility. Commitment is valued because it reduces temptation while �exibility is

valued because it allows the use of the valuable private information. If the taste

shocks were observable one could simply commit to a contingent consumption rule

that depends on them. Because the information is private only the agent can act on

it.

We require that any feasible consumption path satisfy the agent�s budget con-

straint. By a commitment device we mean a further restriction on the set of feasible

allocations. In a dynamic setting this requires the following arrangement. In period

t the agent faces a period t decision problem: he must choose from a menu of cur-

rent consumption choices and decision problems for the next period, t + 1. In the

last period the decision problem is simply a menu over the last period�s consumption

level.

To �x ideas, consider two extreme arrangements. The �rst o¤ers no commitment

and full �exibility: the agent in each period can choose consumption freely constrained

only by his budget set. In this case past choices regarding consumption have an

impact only through the remaining available resources. The other arrangement o¤ers

1See Dekel, Lipman and Rustichini (2001) for axiomatic foundations and a representation theorem
for preferences over choice sets that encompasses both Kreps and Gul and Pessendorfer�s frameworks.
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full commitment but no �exibility: each period the agent�s menu is a singleton with

a unique consumption choice from his budget set.

Of course, one can devise schemes where the menu available depends on past

choices in richer ways. In this way we can o¤er both commitment and �exibility in

varying degrees. We solve for the optimal commitment device, or decision problem,

that the agent faces.

We show that it is convenient to map this problem into a mechanism design

problem. Solving for the informationally constrained optimal allocation of this related

problem then delivers the optimal commitment device.

We begin by considering a simple case without self-control with two possible taste

shocks. By solving this case, we illustrate how the optimal allocation depends criti-

cally on the strength of the temptation for current consumption relative to the dis-

persion of the taste shocks. For the resulting second-best problem there are two

important cases to consider.

For low levels of temptation, relative to the dispersion of the taste shocks, it is

optimal to separate the high and low taste shock agents. If the temptation is not

too low, then in order to separate them the principal must o¤er consumption bundles

that yield somewhat to the agent�s temptation for higher current consumption. Thus,

both bundles provide more present consumption than their counterparts in the �rst

best allocation. When temptation is strong enough, separating the agents becomes

too onerous. The principal then �nds it optimal to bunch both agents: she o¤ers a

single consumption bundle equal to her optimal uncontingent allocation. This solution

resolves the average over-consumption issue at the expense of foregoing �exibility.

In this way, the optimal amount of �exibility depends negatively on the strength

of the temptation relative to the dispersion of the taste shocks. These results with

two shocks are simple and intuitive. Unfortunately, with more than two shocks, these

results are not easily generalized. We show that with three shocks there are robust

examples where �money burning� is optimal: it is optimal to have one of the agents

consuming in the interior of his budget set. Moreover, bunching can occur between

any pair of agents. The examples present a wealth of possibilities with no obvious

discernible pattern.

Fortunately, strong results are obtained in the case with a continuum of taste

shocks. Our main result is a condition on the distribution of taste shocks that is
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necessary and su¢cient for the optimal mechanism to be a simple threshold rule: a

minimum savings level is imposed, with full �exibility allowed above this minimum.

The optimal minimum savings level depends positively on the strength of temptation.

Thus, the main insight from the two type case carries over here: �exibility falls with

the strength of temptation and this is accomplished by increased bunching.

We extend the model to include heterogeneity in temptation of current consump-

tion. This is important because it is reasonable to assume that people su¤er from

temptation at varying degrees. Indeed, perhaps some agents do not su¤er from temp-

tation at all. Allowing for heterogeneity in temptation would imply that those in-

dividuals that we observe saving less are more likely to be the ones su¤ering from

higher temptation. However, we show that the main result regarding the optimality

of a minimum saving policy is robust to the introduction of this heterogeneity.

Up to this point we consider the commitment device as being established in the

initial period. In Section 6 we show that the optimal commitment mechanism can

be implemented sequentially: each period the agent makes a consumption/savings

choice subject to a minimum savings level and selects the minimum savings level for

the next period. The choice regarding the minimum savings level for the next period

thus increases the amount of choices made each period. Despite this di¤erence we

show that this arrangement continues to implement the same allocation and welfare

as the optimal commitment device chosen in the initial period.

We then show that the optimal allocation and welfare can be obtained as the

solution to a simple liquid-illiquid asset portfolio problem. In this implementation

the only instruments available to the agent are a liquid asset, that can be used for

current consumption, and an illiquid asset, that can only be consumed next period.

This is the liquid-illiquid arrangement studied in Laibson (1997). Each period the

investment choice in the illiquid asset mimics perfectly a choice of a minimum savings

level for the next period. It follows that this arrangement also obtains the optimal

allocation and welfare.

The rest of the paper is organized as follows. In the remainder of the introduction

we brie�y discuss the related literature. Section 1 lays out the basic intertemporal

model using the hyperbolic discounting model. Section 2 analyzes this model with

two and three taste shocks while Section 3 works with a continuum of shocks. Section

4 contains the more general case with temptation and self-control proposed by Gul
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and Pesendorfer (2001,2002a,b). Section 5 extends the analysis to arbitrary �nite

time horizons. Section 6 shows how the mechanism can be implemented sequentially

and discusses an implementation with liquid and illiquid assets. The �nal Section

concludes. An appendix collects some proofs.

Related Literature

At least since Ramsey�s (1928) moral appeal economists have long been interested

in the implications of, and justi�cations for, socially discounting the future at lower

rates than individuals. Recently, Caplin and Leahy (2001) discuss a motivation for a

welfare criterion that discounts the future at a lower rate than individuals. Phelan

(2002) provides another motivation and studies implications for long-run inequality

of opportunity of a zero social discount rate. In both these papers the social planner

and agents discount the future exponentially.

Some papers on social security policies have attempted to take into account the

possible �undersaving� by individuals. Diamond (1977) discussed the case where

agents may undersave due to mistakes. Feldstein (1985) models OLG agents that

discount the future at a higher rate than the social planner and studies the optimal

pay-as-you-go system. Laibson (1998) discusses public policies that avoid undersaving

in hyperbolic discounting models. Imrohoroglu, Imrohoroglu and Joines (2000) use

a model with hyperbolic discounting preferences to perform a quantitative exercise

on the welfare e¤ects of pay-as-you-go social security systems. Diamond and Koszegi

(2002) use a model with hyperbolic discounting agents to study the policy e¤ects of

endogenous retirement choices. O�Donahue and Rabin (2003) advocate studying pa-

ternalism normatively by modelling the errors or biases agents may have and applying

standard public �nance analysis.

Several papers involve a trade-o¤ similar in ways to the one emphasized here in

various contexts not related to the intertemporal consumption/saving problem that

is our focus. Since Weitzman�s (1974) provocative paper there has been great interest

in the e¢ciency of the price system compared to a command economy, see Holmstrom

(1984) and the references therein. In a recent paper, Athey, Atkeson and Kehoe (2003)

study a problem of optimal monetary policy that also features a trade-o¤ between

time-consistency and discretion. Sheshinski (2002) models agents that make choices
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over a discrete set of alternatives subject to random errors. Laibson (1994, Chapter

3) considers a moral-hazard model with a hyperbolic-discounting agent.

Dekel, Lipman and Rustichini (2001) provide a representation theorem for prefer-

ences that may value commitment and �exibility. Our time-consistent preference spec-

i�cation is motivated by combining Kreps (1979) with Gul and Pesendorfer (2001).

However, for the analysis we �nd it useful to arrive at Dekel, Lipman and Rustichini�s

representation. Our paper is not choice theoretic in that we do not axiomatize prefer-

ences to derive representation theorems. Rather, we are users applying representation

theorems derived in previous choice theoretic contributions.

1 Basic Setup

We begin by studying the allocation problem over two consumption periods for the

case of a consumer without self-control. Section 4 extends the model to the more

general framework with self-control.

There are two interpretations for the two period model without self-control: (i) a

consumer with time-inconsistent hyperbolic-discounting preferences; (ii) a consumer

with time-consistent preferences that su¤ers from temptations, but cannot exert self-

control. In the two period model the di¤erences between these two frameworks are

mostly about interpretation. Section 5 extends the two-period model to more periods

where the di¤erences between the two frameworks are more important.

1.1 Time-Inconsistent Preferences

Here we follow Strotz (1956), Phelps and Pollack (1968), Laibson (1994, 1997, 1998)

and many others by modeling the agent in each period as di¤erent selves, with dif-

ferent preferences. The approach of the time-inconsistent preference literature thus

takes a game-theoretic perspective of the commitment desire.

Consider two periods of consumption: t = 1; 2. Each period individuals receive

an i.i.d. taste shock � 2 �, normalized so that E� = 1 which a¤ects the marginal

utility of current consumption: higher � make current consumption more valuable.

The taste shock is assumed to be private information. Although we model the shock

as one to preferences, perhaps it is best thought of as a catch-all for the signi�cant
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variation one observes in consumption and saving data after conditioning on available

observable variables. Indeed, with exponential utility unobservable income shocks are

equivalent to unobservable taste shocks.

We denote �rst and second period consumption by c and k, respectively. The

utility for self-1 from periods t = 1; 2 with taste shock � is then

�U (c) + �W (k) :

where U : R+ ! R and W : R+ ! R are increasing, concave and continuously

di¤erentiable and � � 1. The notation allows W (�) 6= U (�), this generality facilitates

the extension to N periods in section 5.

Utility for self-0 from periods t = 1; 2 is given by:

�U (c) +W (k) :

Agents have quasi-geometric discounting: self-t discounts the entire future at rate

� � 1 and in this respect, there is disagreement among the di¤erent t-selves, and 1��

is a measure of this disagreement. On the other hand, there is agreement regarding

taste shocks: everyone values the e¤ect of � in the same way. Below we often associate

the value of � to the strength of a �temptation� for current consumption; thus, we say

that temptation is stronger if � is lower.

Without commitment self-1 enjoys full �exibility and the set of available choices

that we consider is given by the resource constraint B (y) � f(c; y) j c + k � yg,

where we have normalized the interest rate between periods to zero. Facing B (y) in

equilibrium self-1 with taste shock � solves:

max
(c;k)2B(y)

�U(c) +W (k)

Denote the unique solution to this problem by, (cflex(�); kflex(�)). The ex-ante utility

achieved by self-0 from B (y) is thus given by,

Z
[�U

�
cflex(�)

�
+W

�
kflex(�)

�
]dF (�)

In this two-period model providing commitment entails reducing the set of consump-
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tion bundles available. The optimal commitment problem is to choose the best

subset A � B(y) to maximize the expected utility of self-0 given that choices are

in the hands of self-1, that is, the allocation is the outcome of a subgame perfect

equilibrium. Formally, we maximize
R
�U
�
cA(�)

�
+ W

�
kA(�)

�
dF (�) subject to

cA(�); kA(�) 2 argmax(c;k)2A �U (c) +W (k).

Indeed, one can by-pass the set A and view the problem as a mechanism design

problem where we seek to maximize self-0 utility subject to the budget constraint and

the incentive constraint that � is private information of self-1. A mechanism design

approach that solves for the allocation preferred by self-0 with resources y uses the

revelation principle and sets up the optimal direct truth telling mechanism given y:

max
c(�);k(�)

Z
[�U (c (�)) +W (k (�))] dF (�)

�U (c (�)) + �W (k (�)) � �U (c (�0)) + �W (k (�0)) for all �; �0 2 � (1)

c (�) + k (�) � y for all � 2 � (2)

where F (�) is the distribution of the taste shocks with support �.

This problem maximizes, given total resources y; the expected utility from the

point of view of self-0 (henceforth: the principal) subject to the constraint that �

is private information of self-1 (henceforth: the agent). The incentive compatibility

constraint (1) ensures that it is in agent-��s self interest to report truthfully, thus

obtaining the allocation that is intended for him.

The essential tension here is between tailoring consumption to the taste shock

and self-1 �s constant desire for higher current consumption. This tension generates a

trade-o¤ between commitment and �exibility from the point of view of self-0.

If self-0 is himself not subject to any commitment devices then his optimal allo-

cation solves:

max
c0
f�0U (c0) + �v2 (y0 � c0)g

where y0, c0 and �0 represents the initial t = 0, income, consumption and taste shock,

respectively. In what follows we ignore the initial consumption problem and focus on

non-trivial periods.

For the ensuing games played between selves we consider subgame perfect equi-

libria as our solution concept. For dynamic games with �nite horizons this is a very
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natural choice, and is the approach taken by Laibson (1994) and others. Subgame

perfection imposes the desired backward induction reasoning originally emphasized

by Strotz, termed �consistent planning�. It does not however restrict the way selves

that are indi¤erent between two or more choices resolve this indi¤erence.

There are alternatives to subgame perfection that also capture the notion of a

�consistent plan�. These concepts use backward induction but restrict the way points

of indi¤erence can be resolved (e.g. they may be resolved in favor of previous selves or

independently of past histories, etc.). Peleg and Yaari (1973) and Gul and Pesendorfer

(2003) have shown that these alternatives pose problems: there are simple examples

where a consistent plan does not exist.

To avoid these existence problems we adopt subgame perfection when studying

the time-inconsistent framework. It turns out, however, that the subgame perfect

equilibrium characterized in our main results can be implemented with the other

notions of �consistent plans�.

1.2 Time-Consistent Preference

Gul and Pesendorfer (2001, 2002a,b) introduced an axiomatic foundation for pref-

erences for commitment. By introducing the notion of temptation they show that

one can capture a desire for commitment without time inconsistent preferences. We

review their setup and representation result brie�y in general terms and then describe

how we apply it to our framework.

In their static formulation the primitive is a preferences ordering over sets of

choices, with utility function P (A) over choice sets A. In the classical case P (A) =

maxa2A p (a) for some utility function p de�ned directly over actions. Note that in

this case if a set A is reduced to A0 without removing the best element, a� from A;

then P is not altered. In this sense, commitment, a preference for smaller sets, is not

valued.

To model a preference for commitment they assume a consumer may strictly prefer

a set A0 that is a strict subset A; i.e. P (A0) > P (A) and A0 � A. They show that

such preferences can be represented by two utility functions p and t over choices a by

the relation:

P (A) = max
â2A

fp (â) + t (â)g �max
a2A

t (a)
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One can think of t (â) �maxa2A t (a) as the cost of self-control su¤ered by an agent

when choosing â instead of argmaxa2A t (a). In a dynamic setting recursive prefer-

ences with temptation can be represented similarly (Gul and Pesendorfer, 2002a,b).

In our framework the action is a choice for current consumption and savings, c

and k. In order to make contact with the hyperbolic preferences model we follow

Krusell, Kuruscu and Smith (2001) and use:

p (c; k; �) = �U (c) +W (k)

t (c; k; �) = � (�U (c) + �W (k))

where the parameter � > 0 a¤ects the cost of self-control while � captures the degree

of temptation towards current consumption.

Following Kreps� (1979) representation we have introduced a taste shock �. The

utility of a set A is then de�ned by taking the expectation over the di¤erent taste

shocks:

P (A) =

Z
[ max
(c;k)2A

(�U (c) +W (k) + � (�U (c) + �W (k)))�� max
(c;k)2A

(�U (c) + �W (k))]dF (�)

The commitment problem can then be stated as maximizing P (A) by choosing a

subset A � B(y) where B(y) = f(c; k) j c+ k � yg is the budget constraint.

As � ! 1 the agent has no self-control, yields fully to his temptation and we

obtain:

P (A) �

Z
[�U (c (�)) +W (k (�))]dF (�)

s.t. (c (�) ; k (�)) 2 arg max
c;k2A

f�U (c) + �W (k)g

Thus, the problem essentially converge to the time inconsistent hyperbolic model

with the di¤erence that we obtain a tie-breaking criteria: indi¤erence is resolved to

maximize �U (c)+W (k) ; i.e. to bene�t previous �selves�, which is not necessarily the

case in the time-inconsistent hyperbolic preference model with the subgame perfect

equilibrium concept. This di¤erence turns out to be important with more than two

periods. As a consequence, despite the similarities, the hyperbolic model demands

special attention and separate analysis to that of the time-consistent with no self-
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control framework.

2 Optimal Commitment without Self-Control

To gain insight we begin by studying the optimal commitment with only two taste

shocks. We then turn to the case with a continuum of taste shocks which is our main

focus.

2.1 Two Types

Suppose �h > �l, occurring with probabilities p and 1 � p; respectively. Without

temptation, � = 1; there is no disagreement between the principal and the agent

and we can implement the ex-ante �rst-best allocation de�ned by the solution to

�U 0 (cfb (�)) =W
0 (kfb (�)) = 1 and cfb (�) + kfb (�) = y. For low enough levels of

temptation, so that � is close enough to 1; the �rst-best allocation is still incentive

compatible. Intuitively, if the disagreement in preferences is small relative to the

dispersion of taste shocks then, at the �rst best, the low shock agent would not envy

the high shock agent�s allocation. This result relies on the discrete di¤erence in taste

shocks and no longer holds when we study a continuum of shocks in Section 2.

For higher levels of temptation, i.e. � < ��; the �rst best allocation is not incentive

compatible. If o¤ered, agent-�l would take the bundle meant for agent-�h to obtain

a higher level of current consumption.

Proposition 1 If � = f�l; �hg; with �l < �h, there exists a �l=�h < �
� < 1 such that

for � 2 [��; 1] the �rst-best allocation is implementable. Otherwise,

(a) if � > �l=�h separation is optimal, i.e. c� (�h) > c� (�l) and k� (�h) < k� (�l)

(b) if � < �l=�h bunching is optimal, i.e. c� (�l) = c� (�h) and k� (�l) = k� (�h)

(c) if � = �l=�h separating and bunching are optimal

In all cases, the optimum can always be attained with the budget constraint holding

with equality: c� (�) + k� (�) = y for � = �h; �l.

Proof. At � = 1 the incentive constraints are slack at the ex-ante �rst-best allocation.

De�ne �� < 1 to be the value of � for which the incentive constraint of agent-�l holds
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with equality at the �rst best allocation. Then for � > �� both incentive constraints

are slack at the �rst best allocation and �� > �l=�h follows since,

�� � �l
U (cfb (�h))� U (cfb (�l))

W (y � cfb (�l))�W (y � cfb (�h))
(3)

> �l
U 0 (cfb (�h)) (cfb (�h)� cfb (�l))

W 0 (y � cfb (�h)) (cfb (�h)� cfb (�l))
= �l

U 0 (cfb (�h))

W 0 (y � cfb (�h))
=
�l
�h

Now, consider the case where � > �l=�h and suppose that c (�h) + k (�h) < y:

Then an increase in c (�h) and a decrease in k (�h) that holds (�l=�)U (c (�h)) +

U (k (�h)) unchanged increases c (�h) + k (�h) and the objective function. Such a

change is incentive compatible because it strictly relaxes the incentive compatibility

constraint of the high type pretending to be a low type and leaves the other incentive

compatibility constraint unchanged. It follows that we must have c (�h) + k (�h) = y

at an optimum. This also shows that separating is optimal in this case, proving part

(a). Analogous arguments establish parts (b) and (c).

Finally, c (�l)+k (�l) < y cannot be optimal since lowering c (�l) and raising k (�l)

holding �lU(c(�l)) + �W (k(�l)) constant would then be feasible. Such a variation

does not a¤ect one of the incentive constraints and relaxes the other, yet it increases

the objective function since �lU(c(�l)) +W (k(�l)) increases. �

Proposition 1 shows that for � < �� the resulting non-trivial second-best problem

can be separated into essentially two cases. For intermediate levels of temptation, i.e.

�l=�h < � < �
�; it is optimal to separate the agents. In order to separate them the

principal must o¤er consumption bundles that yield somewhat to the agent�s ex-post

desire for higher consumption giving them higher consumption in the �rst period than

the �rst best.

For higher levels of temptation, i.e. � < �l=�h, separating the agents is too

onerous. bunching them is then optimal at the best uncontingent allocation � with

U = W this implies c = k = y=2. Bunching resolves the disagreement problem

at the expense of �exibility. In this way, the optimal amount of �exibility depends

negatively on the size of the disagreement relative to the dispersion of the taste shocks

as measured by �l=�h.

Proposition 1 also shows that it is always optimal to consume all the resources

13



c (�) + k (�) = y. In this sense, �money burning�, i.e. setting c (�) + k (�) < y, is

not required for optimality. As discuss below, with more than two types this is not a

foregone conclusion.

To summarize, with two types we are able to characterize the optimal allocation

which enjoys nice properties. In particular, the budget constraint holds with equality

and we found simple necessary and su¢cient conditions for a bunching or separating

outcome to be optimal.

Unfortunately, with more than two types extending these conclusions is not straight-

forward. For example, with three taste shocks, �h > �m > �l; it is simple to construct

robust examples where the optimal solution has the following properties: (i) the bud-

get constraint for agent �m is satis�ed with strict inequality � i.e. �money burning� is

optimal; (ii) although � < �m=�h remains a su¢cient condition for bunching m and

h, it is no longer necessary: there are cases with � > �m=�h where bunching �m and

�h is optimal; (iii) bunching can occur between �l and �m; with �h separated. The

examples seem to show a variety of possibilities that illustrate the di¢culties in char-

acterizing the optimum with more than two types. Fortunately, with a continuum of

types more progress can be made.

2.2 Continuous Distribution of Types

For the rest of the paper we assume that the distribution of types is represented by

a continuous density f (�) over the interval � � [�; �]. De�ne

G (�) � F (�) + � (1� �) f (�) ;

an expression which will be used frequently below.

We �nd it convenient to change variables from (c (�) ; k (�)) to (u (�) ; w (�)) where

u (�) = U (c (�)) and w (�) = W (k (�)) and we term either pair an allocation. Let

C (u) and K (w) be the inverse functions of U (c) and W (k), respectively, so that

C (�) and K (�) are increasing and convex.

To characterize the incentive compatibility constraint (1) in this case consider the
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problem faced by agent-� when confronted with a direct mechanism (u (�) ; w (�)):

V (�) � max
�02�

�
�

�
u(�0) + w(�0)

�
:

If the mechanism is truth telling then V (�) = �
�
u (�) + w (�) and integrating the

envelope condition we obtain,

�

�
u (�) + w (�) =

Z �

�

1

�
u(~�)d~� +

�

�
u(�) + w(�) (4)

(see Milgrom and Segal, 2002). It is standard to see that incentive compatibility of

(u; w) also requires u to be a non-decreasing function of � � agents that are more

eager for current consumption cannot consume less. Thus, condition (4) and the

monotonicity of u are necessary for incentive compatibility. It is well know that these

two conditions are also su¢cient (e.g. Fudenberg and Tirole, 1991).

The principal�s problem is thus,

v2 (y) � max
u;w

Z �

�

[�u (�) + w (�)] f (�) d�;

subject to (4), C (u (�)) +K (w (�)) � y and u (�0) � u (�) for �0 � �. This problem

is convex since the objective function is linear and the constraint set is convex. In

particular, it follows that v2 (y) is concave in y.

We now substitute the incentive compatibility constraint (4) into the objective

function and the resource constraint, and integrate the objective function by parts.

This allows us to simplify the problem by dropping the function w (�), except for

its value at �. Consequently, the maximization below requires �nding a function

u : �! R and a scalar w representing w (�).

The problem to solve is the following,

v2 (y) � max
w;u(�)2�

(
�

�
u(�) + w +

1

�

Z ��

�

(1�G (�)) u (�) d�

)

(5)

K�1 (y � C (u (�))) +
�

�
u (�)�

�

�
u (�)� w �

Z �

�

1

�
u(~�)d~� � 0 for all � 2 � (6)
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where

� = fw; u j w 2 W
�
R
+
�
; u : �! U(R+) and u is non-decreasingg

Note that both the objective function and the left hand side of the constraint

are well de�ned for all (w; u) 2 �. This follows because monotonic functions are

integrable (Rudin, 1976, Theorem 6.9, pg. 126) and the product of two integrable

functions, in this case 1 � G (�) = 1 � F (�) � � (1� �) f (�) and u (�), is integrable

(Rudin, 1976, Theorem 6.13, pg. 129).

Note that an allocation (w; u) 2 � (uniquely) determines an incentive compatible

direct mechanism. If condition (6) holds, then this direct mechanism satis�es the

budget constraint.

De�nition. We say an allocation (w; u) is feasible if (w; u) 2 � and (6) holds.

2.3 Bunching at the Top

For any feasible allocation (w; u) it is always possible to modify the allocation so as

to bunch an upper tail of agents, that is, give them the same bundle. Informally, this

can be done by simply removing the bundles at the very top. Those agents whose

bundle is removed will now choose the closest bundle available. The new allocation

(w; û) is given by û (�) = u (�) for � < �̂ and û (�) = u(�̂) for some type �̂. Bunching

the upper tail is always feasible, we now show that it is optimal.

To gain some intuition, note that agents with � � ��� share the ordinal preferences

of the principal with a higher taste shock equal to �=�. That is, the indi¤erence curves

�u + �w and �=�u + w are equivalent. Informally, these agents can make a case for

their preferences. In contrast, agents with � > ��� display a blatant over-desire for

current consumption from the principal�s point of view, in the sense that there is no

taste shock that would justify these preferences to the principal. Thus, it is intuitive

that these agents are bunched since separating them is tantamount to increasing some

of these agents consumption, yet they are already obviously �over-consuming�. The

next result shows that bunching goes even further than ���.
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Proposition 2 De�ne �p as the lowest value in � such that for �̂ � �p:

Z ��

�

�
1�G(~�)

�
d~� � 0

An optimal allocation (w; u�) has u� (�) = u� (�p) for � � �p (i.e. it bunches all agents

above �p)

Proof. The contribution to the objective function from � � �p is

1

�

Z ��

�p

(1�G (�)) u (�) d�:

Substituting u =
R �
�p
du+ u (�p) and integrating by parts we obtain,

u (�p)
1

�

Z ��

�p

(1�G (�)) d� +
1

�

Z ��

�p

 Z ��

�

�
1�G(~�)

�
d~�

!

du

Note that, Z ��

�

�
1�G(~�)

�
d~� � 0;

for all � � �p. It follows that it is optimal to set du = 0; or equivalently u (�) = u (�p) ;

for � � �p. �

Note that
R ��
�

�
1�G(~�)

�
d~� � 0 is equivalent to E

h
~�j~� � �

i
=� � 1=� and that

�p < ���. With two types Proposition 1 showed that bunching is strictly optimal

whenever �h=�l < 1=�. Proposition 2 generalizes this result since with two types

when �h=�l < 1=� then according to the de�nition essentially �p = �l.

If �p = � then all agents are pooled at single point where U(c)+W (k) is maximized

subject to c+ k = y. For the rest of the paper we study the case where �p > �:

If the support � is unbounded then �p may not exist. This occurs, for example,

with the Pareto distribution. One can show that in this case it might be optimal to

bunch all agents depending on the Pareto parameter.
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2.4 Minimum Saving Policies

To obtain a simple and full characterization of the optimal allocation for � � �p we

impose the following condition on the distribution F and �.

Assumption A: G (�) � (1� �) �f (�) + F (�) is increasing for all � � �p.

When the density f is di¤erentiable assumption A is equivalent to,

�
f 0 (�)

f (�)
� �

2� �

1� �
;

which places a lower bound on the elasticity of the density f: The lower bound is

negative and continuously decreasing in �: The highest lower bound of �2 is attained

for � = 0 and as � ! 1 the lower bound goes o¤ to �1. Note that A does not

impose the bound on the whole support �, only for � � �p.

For any density f such that �f 0=f is bounded from below assumption A is satis�ed

for � close enough to 1. Moreover, many densities satisfy assumption A for all �.

For example, it is trivially satis�ed for all density functions that are non-decreasing

and also holds for the exponential distribution, the log-normal, Pareto and Gamma

distributions for a large subset of their parameters.

De�ne cflex (�) ; kflex (�) to be the unconstrained optimum for agent-�, that is the

allocation that is achieved when individuals are given full �exibility:

�
cflex (�) ; kflex (�)

�
� argmax

c;k

�
�

�
U (c) +W (k)

�

s.t. c+ k � y

and let uflex (�) � U
�
cflex (�)

�
and wflex (�) � W

�
kflex (�)

�
. Our next result shows

that under assumption A agents with � � �p are o¤ered their unconstrained opti-

mum and agents with � � �p are bunched at the unconstrained optimum for �p.

That is, the optimal mechanism o¤ers the whole budget line to the left of the point
�
cflex(�p); k

flex (�p)
�
given by the ex-post unconstrained optimum of the �p-agent.

Let the proposed allocation (w�; u�) be given by w� = wflex (�) and

u� (�) =

(
uflex (�)

uflex (�p)

for � < �p
for � � �p
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This translates to (c� (�) ; k� (�)) =
�
cflex (�) ; kflex (�)

�
for � < �p and (c� (�) ; k� (�)) =�

cflex (�p) ; k
flex (�p)

�
for � � �p.At this allocation, the agents have full �exibility for

shocks smaller than �p and are bunched at �p for higher shocks. It is an allocation

that corresponds to a minimum savings rule. We now proceed to show that this

allocation is optimal.

De�ne the Lagrangian function as,

L (w; uj�) �
�

�
u (�) + w +

1

�

Z ��

�

(1�G (�)) u (�) d�

+

Z ��

�

�
K�1 (y � C (u (�))) +

�

�
u (�)�

�
�

�
u(�) + w

�
�

Z �

�

1

�
u(~�)d~�

�
d� (�)

where the function � is the Lagrange multiplier associated with the incentive compati-

bility constraint. The function � is required to be left-continuous and non-decreasing,

so that it de�nes a measure � (on the Borel ��algebra) by letting � ([a; b)) =

� (b) � �(a) and the integral is a Lebesgue integral with respect to the measure

�. Without loss of generality set �
�
��
�
= 1.

Intuitively, the Lagrange multiplier � can be thought of as a cumulative distri-

bution function2 that determines the importance of the resource constraints in the

maximization. If � happens to be representable by a density � then the continuum

of constraints can be incorporated into the Lagrangian as the familiar integral of

the product of the left hand side of each constraint and the density function � (�).

Although this is a common approach in many applications, in general, � may have

points of discontinuity and such mass points are associated with individual constraints

that are particularly important. In such cases, working with a density � would not

be valid. As we shall see, in our case the multiplier � is indeed discontinuous.

2Except for the integrability condition. Also, for notational purposes, we make � a left-continuous
function, instead of the usual right-continuous convention for distribution functions.
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Integrating the Lagrangian by parts yields:

L (w; uj�) �

�
�

�
u (�) + w

�
� (�)

+
1

�

Z ��

�

(� (�)�G (�)) u (�) d�

+

Z ��

�

�
K�1 (y � C (u (�))) +

�

�
u (�)

�
d� (�)

Note that we do not need to incorporate the monotonicity condition explicitly.

Instead, we work directly with � which incorporates the monotonicity condition.

The next lemma shows that the appropriate �rst-order condition are necessary and

su¢cient for optimality.

Lemma of Optimality. (a) If an allocation
�
w0; u0

�
2 � is optimal with u0 is

continuous then there exists a non-decreasing �0 such that the following �rst-order

conditions in terms of Gateaux di¤erentials3:

@L
�
w0; u0;w0; u0j�0

�
= 0 (7)

@L
�
w0; u0;hw; huj�0

�
� 0 (8)

hold for all (hw; hu) 2 � and hu continuous. (b) Conversely, if �rst-order conditions

(7) and (8) holds for some �0 for all for all (hw; hu) 2 � then (u0; w0) is optimal.

Proof. In the appendix. �

The proof of the lemma proceeds by in three steps, drawing heavily on the methods

developed in Luenberger (1969). We �rst verifying the conditions required to charac-

terize optimality in terms of the maximization of the Lagrangian (cite Luenberger).

We then show that because the Lagrangian is the integrals of concave functions it is

su¢ciently di¤erentiable. Finally, because the Lagrangian is convex we show that it

is maximized if and only the stated �rst-order conditions hold by modifying a result

3Given a function T : 
! Y , where 
 � X and X and Y are normed spaces. If for x 2 
 and
h 2 X the limit

lim
�#0

1

�
[T (x+ �h)� T (x)]

exists then it is called the Gateaux di¤erential at x; with direction h; and is denoted by @T (x;h).
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in Luenberger.

The Gateaux di¤erential at the proposed allocation (w�; u�) is given by:

@L (w; u;hw; huj�) =

�
�

�
hu (�) + hw

�
� (�) +

1

�

Z ��

�

(� (�)�G (�))hu (�) d� (9)

+
�p
�

Z ��

�p

�
�

�p
� 1

�
hud� (�)

for all (hw; hu) 2 �.

Proposition 3 The proposed allocation (w�; u�) is optimal if and only if assumption

A holds.

Proof. Necessity. Since (w�; u�) is optimal then there should exist a non-decreasing

�� such that �rst-order conditions (7) and (8) hold. We will show that if assumption A

does not hold then the �rst-order conditions require a decreasing ��; a contradiction.

Condition (8) with hu = 0 requires that �� (�) = 0 since hw is unrestricted.

Using �� (�) = 0 and integrating (9) by parts leads to (Theorem 6.20 in Rudin, 1976,

guarantees this step since hu is continuous):

@L (w�; u�;hw; huj�
�) = 
 (�)hu (�) +

Z ��

�


 (�) dhu (�) ; (10)

where,


 (�) �
1

�

Z ��

�

[��(~�)�G(~�)]d~� +
�p
�

Z ��

maxf�;�pg

 
~�

�p
� 1

!

d��(~�) (11)

It follows that condition (8) implies that 
 (�) � 0 for all � 2 �. Suppose that there

is a �1 such that 
 (�1) > 0 then we argue that there is an interval [�0; �1] such that


 (�) > 0 for all � 2 [�0; �1]. This follows since in the de�nition of 
 the �rst term

is continuous and the second term is non-increasing. But such an interval leads to a

contradiction with (8) for any continuous non-decreasing function hu that is strictly

increasing within [�0; �1] and constant for �� [�0; �1].

Given 
 (�) � 0 for all � 2 �, (7) implies that 
 (�) = 0 for � 2 [�; �p], i.e.

wherever u� is strictly increasing. It follows that,

�� (�) = G (�) ;
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for all � 2 (�; �p]. The proposed allocation (w�; u�) thus determines a unique candidate

multiplier �� in the separating region (�; �p] and assumption A is necessary and

su¢cient for �� (�) to be non-decreasing in this region. It follows that assumption A

is necessary for the proposed solution (w�; u�) to be optimal.

Su¢ciency. We now prove su¢ciency by showing that there exists a non-decreasing

multiplier �� such that the proposed (w�; u�) satis�es the �rst-order conditions (7)

and (8) for all (hw; hu) 2 �. We�ve speci�ed �� for (�; �p] that is consistent with

these �rst-order conditions so we only need to specify �� for (�p; ��]. We will show

that �� (�) = 1 for � 2
�
�p; ��

�
meets the requirements.

The constructed � is not continuous, it has an upward jump at � and a jump at

�p. To show that �� is non-decreasing all that remains is to show that the jump at

�p is upward,

lim
�#�p

�� (�)� �� (�p) = 1�G (�p) � 0;

which follows from the de�nition of �p. To see this, note that if �p = � the result is

immediate since then �� would jump from 0 to 1 at �. Otherwise, notice that, by

de�nition, �p is the lowest �̂ such that 
 (�) � 0 for all � � �̂; which implies that


0 (�p) = G (�p)� 1 � 0.

Given the proposed allocation (w�; u�) and the constructed Lagrange multiplier ��

imply that 
 � 0 and that 
 = 0 wherever u� is increasing. The Gateaux di¤erential

is also given by (10), integration by parts is warranted for non-decreasing hu given

the particular �� constructed. It follows that the �rst-order conditions (7) and (8)

are satis�ed. �

The �gure below illustrates the form of the multiplier �� (�) constructed in the

proof of the proposition.
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Figure 2: The Lagrange multiplier �� (�)

Proposition 3 shows that under assumption A the optimal allocation is extremely

simple. It can be implemented by imposing a maximum level of current consumption,

or equivalently, a minimum level of savings. Such minimum saving policies are a

pervasive part of social security systems around the world.

The next result shows the comparative statics of the optimal allocation with re-

spect to temptation �. As the temptation increases, i.e. � decreases, more types are

bunched (i.e. �p decreases). In terms of policies, as the disagreement increases the

minimum savings requirement decreases so there is less �exibility in the allocation.

Proposition 4 The bunching point �p increases with �. The minimum savings re-

quirement, smin = y � C (u (�p)) ; decreases with �.

Proof. That �p is weakly increasing follows directly from its de�nition. To see that

smin is decreasing note that smin solves

�p
�

U 0 (y � smin)

W 0 (smin)
= 1;

and that �p, when interior, solves,

�p
�
= E [� j � � �p] :
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Combining these, we obtain E [�j� � �p]U 0 (y � smin) =W 0 (smin) = 1. Since E [� j � � �p]

is increasing in �p the result follows from concavity of U and W . �

If assumption A does not hold then no-minimum savings rules are optimal. Notice

that this is not directly implied by the necessity part of proposition 3, given that this

proposition analyzes the optimality of the proposed allocation which is a particular

minimum savings rule. In the next proposition we show that there are no minimum

savings rules that are optimal without assumption A.

Proposition 5 If assumption A does not hold, then there are no optimal minimum

savings rules.

Proof. Let [a; b] � [�,�p); with a < b, be an interval where G is strictly decreasing.

Let (ŵ; û) jxp be a minimum savings allocation indexed by xp:

û (�) =

(
uflex (�)

uflex (x)

for � < xp
for � � xp

ŵ = wflex (�)

where xp denotes the proposed bunching point. Towards a contradiction suppose that

(ŵ; û) jxp is optimal for some xp.

We now follow the proof of proposition 3. Let �̂ be the associated Lagrange

multiplier for budget constraint. And let 
̂ be described in the same way as equation

(11) but with xp in place of �p:


̂ (�jxp) =
1

�

Z ��

�

�
�̂
�
~�
�
�G

�
~�
��
d~� +

xp
�

Z ��

maxfx;�g

 
~�

xp
� 1

!

d�̂
�
~�
�

(12)

where just as before, a necessary condition for optimality is 
̂ (�jxp) � 0 for all � 2 �.

Then x � a, otherwise, the associated multiplier �̂ (�), which is equal to G in the

separating region, would be decreasing for � 2 [a;min fx; bg]. Integrating by parts

the second term of equation (12) we obtain:


̂ (xpjxp) =
1

�

Z ��

xp

[1�G(~�)]d~�
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which is independent of the choice of the multiplier �̂. But for any xp � a < �p, we

have then that 
̂ (xpjxp) > 0 by the de�nition of �p. Hence no minimum savings rule

is optimal. �

2.5 Drilling

In this subsection we study cases where assumption A does not hold and show that

the allocation described in Proposition 3 can be improved upon by drilling holes in

the separating section where the condition in assumption A is not satis�ed.

Suppose we are o¤ering the unconstrained optimum for some closed interval [�a; �b]

of agents and we consider removing the open interval (�a; �b). Agents that previously

found their tangency within the interval will move to one of the two extremes, �a or

�b. The critical issue in evaluating the change in welfare is counting how many agents

moving to �a versus �b. For a small enough interval, welfare rises from those moving

to �a and falls from those moving to �b.

Since the relative measure of agents moving to the right versus the left depends on

the slope of the density function this explains its role in assumption A. For example,

if f 0 > 0 then upon removing (�a; �b) more agents would move to the right than the

left. As a consequence, such a change is undesirable. The proof of the next result

formalizes these ideas.

Let �ind 2 [�a; �b] be the agent type that obtains the same utility from reporting

�a or �b. We �nd it more convenient to state the next result in terms of c (�) and

k (�).

Proposition 6 Suppose an allocation (c (�) ; k (�)) satis�es incentive compatibility

(1) and the budget constraint (2) and has c (�) = cflex (�) and k (�) = kflex (�) for

� 2 [�a; �b], where �b � �p. Then if G (�) is decreasing on [�a; �b] the allocation

(~c (�) ; ~k (�)) de�ned below increases the objective function, remains incentive compat-

ible (1) and satis�es the budget constraint (2):

~c (�) ; ~k (�) =

8
>><

>>:

c (�) ; k (�)

c (�a) ; k (�a)

c (�b) ; k (�b)

; for � 62 [�a; �b]

; for � 2 (�a; �ind)

; for � 2 [�ind; �b)
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Proof. In the appendix. �

Proposition 6 illustrates by construction why assumption A is necessary for a

simple �threshold rule� to be optimal and gives some insight into this assumption. Of

course, Proposition 6 only identi�es particular improvements whenever assumption A

fails. We have not characterized the full optimum when assumption A does not hold.

It seems likely that �money burning� may be optimal in some cases.

3 Stochastic Temptation

We now consider now the case where the level of temptation, measured by �, is

random. Variation in � captures the commonly held view that the temptation to

overconsume is not uniform in the population and that it is the agents that save

the least that are more likely to be �undersaving� because of a higher temptation to

consume (e.g. Diamond, 1977).

If an agent knew his temptation level � at time 0, he would tailor the mechanism

to this particular �, and the analysis would proceed as in the previous sections. This

then reduces to a comparative static exercise on �. To explore other possibilities we

assume that the temptation level for t = 1 is random and realized at t = 1 (together

with �) so that it is unknown to the time-0 self. We assume that both � and � are

realized from a continuous joint distribution. We do not require independence of �

and � for our results. We continue to assume that � � 1.

We will make use of a result that shows that indi¤erence is rare. For any set A of

pairs (u; w) de�ne the optimal correspondence over x 2 X

M (x;A) � arg max
(u;w)2A

fxu+ wg

(we allow the possibility that M (x;A) is empty). The correspondence M (x;A) is

monotone in the sense that if x1 < x2 and (u1; w1) 2 M (x1;A) and (u2; w2) 2

M (x2;A) then u1 � u2. Points at which there are more than a single element in

M (x;A) represent upward �jumps�. As with monotonic functions, there can be at

most a countable number of such �jumps�. This is the logic behind the next result.

Lemma (Countable Indi¤erence). For any A the subset XI � X for which
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M (x;A) has two or more points (set of agents that are indi¤erent) is at most count-

able.

Proof. Let Mu (x;A) = fu : 9w (u; w) 2M(x;A)g and let D be the set of points in

X where M (x;A) has more than one element, so that infMu(x;A) 6= supMu(x;A)

for all x 2 D. For each x 2 D we can choose a rational number rx such that

infMu(x;A) < rx < supM
u(x;A). Given the stated monotonicity property for Mu

it follows that rx are strictly increasing in x, so that in particular for each x 2 D we

have a distinct rational number rx: Thus, there is a 1-1 correspondence between the

set D and a sub-set of the rational numbers. Since the rational numbers are countable

the result follows. �

For any set A of available pairs (u; w) agents with (�; �) maximize their utility:

arg max
(u;w)2A

�
�

�
u+ w

�
:

Note that this argmax set is identical for all types with the same ratio x � �=�. The

allocation however may depend on � and � independently for a given x only if the x-

agent is indi¤erent amongst several pairs of u; w. However, the Countable Indi¤erence

lemma shows that the set of x for which agents are indi¤erent is of measure zero. As

a consequence, allowing the allocation to depend on � or � independently, in addition

to x; would not improve the objective function. Without loss in optimality, we focus

then in allocations that are functions of x only.

The objective function can be written as

E [�u (x) + w (x)] = E [E [�u (x) + w (x)j x]] =

Z
[n (x) u (x) + w (x)] ~f (x) dx

where n (x) = E (�j x) and ~f (x) is the density over x. Let X = [x; �x] be the support

of x and ~F (x) be its cumulative distribution.

Let ~G (x) = ~F (x)� (n (x)� x) ~f (x) and de�ne xp 2 X as the lowest value such

that for x̂ � xp, x̂ 2 X; Z �x

x

(1� ~G (x))dx � 0

Let uflex; wflex be the values indexed by x that maximize fxu+ wg subject to

the resource constraint y � C (u) +K (w). Let the proposed allocation be given by
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w = wflex (x) and u� (x) = uflex (x) if x < xp and u� (x) = uflex (xp) if x � xp.

We modify our previous assumption A in the following way.

Assumption Ã. ~G (x) is increasing in x for x 2 [x; xp]

The incentive compatibility constraint is thus

xu (x) + w (x) = xu (x) + w (x) +

Z x

x

u (x) dx

plus the standard monotonicity restriction on u (x). Substituting this last equation

into the objective function, we can write the principal�s problem as

max
w;u(�)2~�

�
xu (x) + w (x) +

Z �x

x

(1� ~G (x))u (x) dx

�
(13)

subject to

K�1 (y � C (u (x))) + xu (x)� xu (x)� w (x)�

Z x

x

u (x) dx � 0 for all x 2 X

where

~� =
�
w; u (�) jw 2 W

�
R
+
�
; u : X ! R and u is non-decreasing

	

The next proposition states that minimum savings rules are optimal under as-

sumption Ã.

Proposition 7 The allocation (w�; u�) is optimal if and only if assumption Ã holds.

Proof. The proof proceeds along the same lines as the proof of Proposition 3. Note

that problem (13) is equivalent to problem (5), the only thing to check is that the

new Lagrange multiplier has a non-negative jump at zero. This jump is equal in sign

to (x� n (x)), which non-negative given the assumption that � � 1. �

So, when temptation is stochastic, under assumption ~A, minimum savings rule

are optimal for an individual. Suppose now that there is a population of individuals

such that (�; �) is i.i.d. across agents and private information to each agent. Then,

it is easy to see that the allocation described in the above proposition is the optimal
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allocation for every agent in the population. A principal will o¤er a unique minimum

savings rule for the whole population.

4 Optimal Commitment with Self-Control

In section 1.2 we introduced a preference for commitment speci�cation with self con-

trol for an agent subject to taste shocks. In this section, we study the optimal

commitment device of an agent with such preferences. We will show now that mini-

mum saving rules are optimal for this preferences speci�cation as well, under similar

conditions as before.

In keeping with the previous section we introduce self-control while consider the

general case where the level of temptation, measured by �, and the degree of self-

control ,�, are random and realized together with �, that is, at the time temptation

is being experienced. We assume �; � and � are realized together from a continuous

distribution � we do not require independence of �; � and � for our results. Assume

that (�; �; �) has rectangular support
�
�; ��
�
� [�; ��]� [�; ��] � [0;1)� (0; 1]� [0;1).

After a few manipulations the objective function can then be written as:

E

�
(1 + ��) max

�;!2A

h
(�=�̂)� + !

i
� �� max

�;!2A
[(�=�)� + !]

�

where �̂ � (1 + ��) = (1 + �). De�ne the random variables ẑ and z by ẑ � �=�̂ and

z � �=�. Let �̂ be the union of the supports for z and ẑ, so that �̂ � [x; �x] �

[�(1 + �)=(1 + ��); ��=�]. Consider an allocation over �̂ given by a pair of functions

u : �̂! U (R+) and w : �̂! W (R+) : Then the objective function is equivalent to

E f(1 + ��) (ẑu(ẑ) + w(ẑ)� ��(zu(z) + w(z))g

subject to,

(u(x); w(x)) 2 arg max
�;!2A

[x� + !] (14)

for all x 2 �̂.
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Using the law of iterated expectations, we can write the objective function as:

Z

�̂

� (ẑ) (ẑu(ẑ) + w(ẑ))h (ẑ)�

Z

�̂

� (z) (zu(z) + w(z))f (z)

where h (ẑ) and f (z) are the densities of ẑ and z, respectively and � (x) � E [(1 + ��) j ẑ = x]

and � (x) � E [�� j z = x].

We thus obtain a representation of the objective function as,

Z

�̂

(xu(x) + w(x))ĝ (x) dx

where the density ĝ (x) � � (x)h (x) � � (x) f (x), can be negative or positive, and

de�nes a signed measure over the state space �̂. This is the representation of prefer-

ences derived axiomatically by Dekel, Lipman and Rustichini (2001). Their general

framework allows preferences for commitment and �exibility.

Note that h (z) = 0 for z > �(1 + ��)=(1 + ���) and that f (z) = 0 for z < �=�,

so ĝ (x) < 0 for z 2 (�(1 + ��)=(1 + ���); �x]. De�ne the cumulative measure function

Ĝ (x) =
R x
ĝ (z) dz where Ĝ (�x) = 1.

From (14) we need to impose that:

xu(x) + w(x) � xu(x0) + w(x0) for all x; x0 2 �̂ (15)

or equivalently :

xu (x) + w (x) = xu (x) + w +

Z x

x

u (x0) dx0 (16)

with the associated monotonicity constraint.

We can now substitute (16) into the objective function and the resource con-

straints. Integrating by parts the objective function, and using Ĝ (�x) = 1, we can

rewrite the problem as

max
(w;u(�))2�̂

�
xu (x) + w +

Z

�̂

[1� Ĝ (x)]u (x) dx

�
(17)
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subject to the resource constraints:

K�1 (y � C (u (x))) + xu (x)� xu (x)� w �

Z x

x

u(x0)dx0 � 0 (18)

and where �̂ �
n
w; u jw 2 W (R+) ; u : �̂! R and u is non-decreasing

o

Note that the problem stated in (17) is equivalent to the problem (5) stated in

Section 2. The following propositions follow directly from the results in that section.

Proposition 8 Let xp be the lowest value in �̂ such that for all x̂ � xp

E
h
1� Ĝ (x) j x � x̂

i
� 0

An optimal allocation, (w�; u�) has u� (x) = u� (xp) for x � xp.

Proof. Equivalent to proof of Proposition 2. �

De�ne uflex; wflex be the values that maximize fxu+ wg subject to the resource

constraint y � C (u) +K (w). Let the proposed allocation be given by w = wflex (x)

and u� (x) = uflex (x) if x < xp and u� (x) = uflex (xp) if x � xp. We introduce the

following assumption analogous to that of assumption A

Assumption B: Ĝ (x) is increasing for all x � xp.

The next proposition states that minimum savings rules are optimal under as-

sumption B.

Proposition 9 The allocation (w�; u�) is optimal if and only if assumption B holds.

Proof. The proof proceeds along the same lines as the proof of Proposition 3, except

that � does not jump at x (because Ĝ (x) is zero at x). �

In the case where � and � are non-stochastic, we can establish a connection

between assumptions A and B by showing that B is a weaker requirement.

Lemma. If � and � are deterministic and the condition for assumption A holds for

[�; �0p�̂=�], then the condition for assumption B holds for [�; �
0
p].

Proof. In the appendix. �
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5 Arbitrary Finite Horizons

We now show that our two-period analysis extends to arbitrary �nite horizons. Our

choice of con�ning our attention to �nite horizons is motivated by the fact that with

in�nite horizons the time-inconsistent framework may otherwise yield reputational

equilibria. The equilibria involve reputation in the sense that a good equilibrium is

sustained by a threat of reverting to a bad equilibria upon a deviation. Some authors

have questioned the credibility of such reputational equilibria in intrapersonal games

(e.g. Gul and Pesendorfer, 2002a, and Kocherlakota, 1996). We avoid these issues by

focusing on �nite horizons.

Indeed, Krusell, Kuruscu and Smith (2001) have shown that the time-consistent

temptation framework we are working with may also be problematic with an in�nite

horizon. Even with full �exibility, with in�nite horizons, multiple solutions may exist

to the recursive dynamic program that describes the agent�s problem. To avoid having

deciding which solution to focus on we work with �nite horizons where these problems

do not arise.

5.1 Time-Consistent Preferences

Extending the two-period results with time-consistent preferences is straightforward

and leads naturally to a recursive dynamic formulation. We treat separately the

case with and without self-control and show that, in both cases, the resulting Bell-

man equation has the same structure as the two-period problem studied in previous

sections, implying that the same analysis can be obtained.

We begin with the case without self-control. The problem with T � 2 periods

remaining can be written as:

vT (y) = max

Z
�U (c (�)) + vT�1 (k (�)) dF (�)

�U (c (�)) + �vT�1 (k (�)) � �U(c(�
0)) + �vT�1(k(�

0)) for all �; �0 2 �

c (�) + k (�) � y for all � 2 �

where v1 � W . Obviously, the case with random � can be treated similarly.
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With self-control we start by writing the problem as,

vT (y) = max
A�B(y)

Ef(1 + �) max
c;k2A

[zU (c) + �̂vT�1 (k)]� �max
c;k2A

[zU (c) + �vT�1 (k)]g

where B(y) = f(c; k) j c+ k � yg. This dynamic program maximizes over the subset

A of the budget constraint. Given this set the agent can be seen as maximizing

zU (c)+ �̂vT�1 (k) ; where �̂ � (1 + ��) = (1 + �), and su¤ers from not maximizing his

temptation utility zU (c) + �vT�1 (k) : In both cases vT�1 (k) adequately summarizes

the value attached to the continuation game with resources k: Since �̂ < 1 the agent

can be seen as yielding somewhat to the temptation of higher current consumption.

Since �̂ > � the agent is exerting some self-control.

Using the same arguments as in section 4 it is easy to re-write this problem in

terms of an allocation c; k : �̂! R

vT (yT ) = max

Z

�̂

[�U (c (�)) + vT�1 (k (�))]n (�) d�

�U (c (�)) + vT�1 (k (�)) � �U(c(�
0)) + vT�1(k(�

0)) for all �; �0 2 �̂

c (�) + k (�) � y for all � 2 �̂

It is immediate that vT is increasing, concave and continuously di¤erentiable if

vT�1 has these properties. Since v1 = W has these properties by assumption it follows

by assumption that vT has them, for all T . It follows that the analysis from previous

sections immediately applies with vt�1 in the role of W .

For any horizon T these problems has exactly the same structure as their two-

period counterparts analyzed previously, with the function vT�1 playing the role of

the utility function W . We only required W to be increasing and concave and since

vT�1 has these properties all the previous analysis apply immediately implying the

following proposition.

Proposition 10 Under assumption A the optimal allocation with a horizon of N

periods can be implemented by imposing a minimum amount of saving St (yt) in period

t.

Another property of the optimal allocation identi�ed in Proposition 3 is worth
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mentioning. Suppose agents can save, but not borrow, privately behind the princi-

pal�s back at the same rate of return as the principal, as in Cole and Kocherlakota

(2001). The possibility of this �hidden saving� reduces the set of allocations that are

incentive compatible since the agent has a strictly larger set of possible deviations.

Importantly, the mechanism described in Proposition 10 continues to implement the

same allocation when we allow agents to save privately, and thus remains optimal.

To prove this claim we argue that confronted with the mechanism in Proposition

10 agents that currently have no private savings would never �nd it optimal to ac-

cumulate private savings. To see this, �rst note that by Proposition 10 the optimal

mechanism imposes only a minimum on savings in each period. Thus agent-� always

have the option of saving more observably with the principal than what the allocation

recommends, yet by incentive compatibility the agent chooses not to.

Next, note that saving privately on his own can be no better for the agent than

increasing the amount of observable savings with the principal. This is true because

the principal maximizes the agents utility given the resources at its disposal. Thus,

from the point of view of the current self, future wealth accumulated by hidden savings

is dominated by wealth accumulated with the principal. It follows that agents never

�nd it optimal to save privately and the mechanism implements the same allocation

when agents can or cannot save privately.

In Proposition 10 the minimum saving is a function of resources yt: With CRRA

preferences the optimal allocation is linearly homogenous in y, so that c (�; y) = ~c (�) y

and k (�; y) = ~k (�) y. It follows that the optimal mechanism imposes a minimum

saving rate for each period that is independent of yt.

Proposition 11 Under assumption A and U (c) = c1��= (1� �) the optimal mech-

anism for the N-period problem imposes a minimum saving rate st for each period t

independent of yt.

5.2 Time-Inconsistent Preferences

It is tempting to conclude that in the in the time-inconsistent hyperbolic model

one can simply study the multi-period dynamic problem with no-self control time-

consistent preferences described above. After all, the two models were equivalent in

the case of two periods.
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This is misleading for the following reason. In the hyperbolic model we have T

players and the di¤erence in preferences between these selves can be exploited to

punish past deviations. For example, an agent at time t that is indi¤erent between

allocations can be asked to choose amongst them according to whether there has been

a deviation in the past. In particular, she can �punish� previous deviating agents by

selecting the worst allocations from their point of view. Otherwise, if there have been

no past deviations, she can �reward� the truth-telling agents by selecting the allocation

preferred by them. Such schemes may make deviations more costly, relaxing the

incentive constraints, and are thus generally desirable.

One way to remove the possibility of these punishment schemes is to introduce

the re�nement that when agents are indi¤erent between several allocations choose

the one that maximizes the utility of previous selves. Indeed, Gul and Pesendorfer�s

(2001,2002a,b) framework, discussed in Section 4, delivers, in the limit without self-

control, the hyperbolic model with this added re�nement.

However, with a continuous distribution for � such a re�nement is not necessary

to rule out these punishment schemes. We show that for any mechanism the subset

of � over which �-agents are indi¤erent is at most countable. This implies that the

probability that future selves will �nd themselves indi¤erent is zero so that the threat

of using indi¤erence to punish past deviations has no deterrent e¤ect.

Our aim is to take a general mechanism that generates some equilibrium and show

that in the case of a continuos distribution of the taste shock we can use a simpler

direct mechanism that has a truth telling equilibrium with the same outcome.

We �rst describe the general mechanism, de�ne an equilibrium there and derive

a properties of equilibria with a continuous distribution of shocks. We then describe

the simpler direct mechanism and prove the result that these can be used without

loss in generality.

5.2.1 General Mechanism

Time runs from t = 0; 1; :::; T and for each t there is a player which we label �self-t�.

After observing the current taste shock self-t sends a message mt to the principal

from a set of allowable messages Mt (m
t�1), which may depend on the history of past

messages summarized bymt�1 = (m0;m1; :::;mt�1). LetM t be the set of all allowable

histories mt, i.e. ms 2 Ms (m
s�1) for s � t. The principal pays out utility at time
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t as a function of the history of reports: ut (mt) : M t ! U(R+). Let M = fMtg
T

t=1

and u = futg
T

t=1 collect the message and payo¤s, then a mechanism is summarized

by (M;u) and de�nes a game between the selves.

Note however that, in this game, self-t observes the history of past shocks and the

history of messages. This is only natural since indeed, the various selves are di¤erent

time incarnations of the same person.

An application of Revelation Principle ideas in this context would lead us to focus

on mechanisms that have Mt = �
t; self-t reports on the history of taste shocks, since

this is the primitive information (i.e. type) that self-t has. The Revelation Principle

would not justify focusing on Mt = �; self-t reports his current taste shock only, as

it does when there is a single agent.

Indeed, with �nite taste shocks it is easy to construct examples where having

the message space �t is strictly preferred to having �. However, with a continuous

distribution of taste shocks we will show that these advantages disappear andMt = �

as a message space can be used without loss in optimality. It turns out that making

the argument for � over an arbitrary space Mt is just as simple as making it against

�t: Thus, we do not as a preliminary step appeal informally to the revelation principle

and continue to work below with general mechanisms (u;M):

De�nition. A reporting strategy rt for self-t is a mapping from the history of shocks

and messages to the current message, i.e. for each mt�1 2M t�1 we have rt (�;mt�1) :

�t !Mt (m
t�1).

Let r = frtg
T

t=0 collect the strategy pro�le of all selves.

We introduce notation to present the equilibrium de�nition recursively. Given

any history of messages ms up to time s a strategy pro�le r determines the message

reports that follow as a function of the shocks. Let rt;s(�t;ms) represent the messages

reported in periods s; s + 1; :::; t if the realization of shocks up to t is given by �t

de�ned by the recursion:

rt+1;s
�
�t+1;ms�1

�
= (rt;s

�
�t;ms�1

�
; rt+1

�
�t+1; rt;s

�
�t;ms�1

��

with rs;s (�s;ms�1) = rs (�
s;ms�1).
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De�ne the expected continuation utility in period t by:

wt
�
�t;mt; r

�
�

T�tX

s=1

Z

�s

~�t+sut+s

�
mt; rt+s;t+1((�t; ~�

t+s

t+1);m
t)
�
f(~�t+1) � � � f(~�t+s)d~�

t+s

t+1

or in terms of the recursion,

wt
�
�t;mt; r

�
=

Z

�

[ ~�t+1ut+1

�
mt; rt+1((�

t; ~�t+1);m
t)
�

+ wt+1

�
(�t; ~�t+1); (m

t; rt+1((~�
t
; ~�t+1);m

t))
�
]f(~�t+1)d~�t+1

with wT
�
�T ;mT ; r

�
= 0.

Note that continuation utility wt
�
�t;mt; r

�
may depend on the sequence of past

values of the taste shocks �t. Since taste shocks are independently distributed over

time, the dependence on �t is result of future reporting strategies, rt+s for s � 1,

dependence on �t. Thus, future reports may provide information on past shocks.

This dependence of future reports has the potential to induce good behavior from

previous selves.

For example, imagine a mechanism where that requests a message on the whole

sequence of shocks (or simply on the current shock and on whether or not all previous

selves have reported truthfully previous shocks). If future selves could be induced to

�tell-on� previous selves then we could punish the mis-reporting and induce truth-

telling more easily.

Given a mechanism (M;u) a strategy pro�le r is a sub-game perfect equilibrium

of the game if and only if:

�tut
�
mt�1; rt

�
�t;mt�1

��
+ �wt

�
�t; (mt�1; rt

�
�t;mt�1

�
); r
�

� �tut(m
t�1;mt) + �wt

�
�t; (mt�1;mt); r

�

for all mt 2Mt (m
t�1), all mt�1 2M t�1; t = 0; 1; 2; :::; T .

Our argument will be to show that for equilibrium strategies the dependence of

future reports on the true history of shocks is limited enough so that wt
�
�t;mt; r

�
is

actually independent of �t and we write wt
�
�t;mt; r

�
= w�t (m

t; r) for some function

w�t .
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The idea is that in order for self-t to tell on his previous selves he must be in-

di¤erent to doing so. This is true because the history of shocks does not a¤ect his

payo¤ directly. With a continuous distribution of shocks indi¤erence is rare (Count-

able Indi¤erence Lemma, Section 3) and thus the expectation the continuation is not

a¤ected by these tattle tales.

Proposition 12 Assume a continuous distribution over �: If r is an equilibrium

strategy given the mechanism (u;M) then for all mt�1 the report rt
��
�t�1; �t

�
;mt�1

�

is independent of �t�1 for almost all �t and the continuation utilities wt
�
�t; (mt�1;mt); r

�

are independent of �t.

Proof. The proof is by induction and applies the Countable Indi¤erence Lemma.

Suppose that given equilibrium strategies r the continuation value for self-t is

only a function of mt and not of �t, so that wt(�
t;mt; r) = w�t (m

t; r). We show

below that this implies (i) reports at t are independent of �t�1 for almost all �t; i.e.

rt
�
(�t�1; �t);m

t�1; r
�
= r�t (�t;m

t�1; r) for almost all �; (ii) this, in turn, implies that

the continuation value at t � 1 is independent of �t�1; i.e. wt�1
�
�t�1;mt�1; r

�
=

w� (mt�1; r). Finally, in the last period wT
�
�t;mt; r

�
� 0 by de�nition so the result

follows by induction using (i) and (ii).

To establish (i) note that since r is an equilibrium the report self-tmakes rt
�
�t;mt�1; r

�

must satisfy

rt
�
(�t�1; �t);m

t�1
�
2 R�t

�
�tjm

t�1
�

where the correspondence R�t is de�ned by

R�t
�
�jmt�1; r

�
� arg max

m̂2Mt(mt�1)

�
�ut(m

t�1; m̂) + �w�t
�
mt�1; m̂; r

�	

By the Countable Indi¤erence Lemma, R�t (�jm
t�1; r) is single valued except possibly

for a countable subset of � (it cannot be empty by the de�nition of an equilibrium).

It follows that for all � where R�t (�jm
t�1; r) is single valued rt

�
(�t�1; �);mt�1

�
cannot

depend on �t�1: Thus, we can write

rt
�
(�t�1; �);mt�1

�
= r�t

�
�;mt�1

�

except for a countable subset of �. In short: rt = r�t almost everywhere.
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To establish (ii) note that the continuation value wt�1 satis�es:

wt�1
�
�t�1;mt�1; r

�
=

Z

�

[ ~�tut

�
mt�1; rt((�

t�1; ~�t);m
t�1)

�

+ w�t

�
mt�1; rt((�

t�1; ~�t);m
t�1); r

�
]f(~�t)d~�t

=

Z

�

[ ~�tut

�
mt�1; r�t (

~�t;m
t�1)

�

+ w�t

�
mt�1; r�t (

~�t;m
t�1); r

�
]f(~�t)d~�t

� w�t�1(m
t�1; r)

The �rst equality follows from the de�nition of wt�1 and the hypothesis regarding wt:

The second follows from the result above that rt = r�t almost everywhere. �

Below we use this result to argue that we can, without loss in generality, consider

a simpler mechanism that only requests messages on the current taste shock and focus

on the truth-telling equilibrium.

5.2.2 Simple Direct Mechanism

For any mechanism (u;M) with equilibrium r we de�ne an associated direct mecha-

nism with ~Mt = � and payo¤,

~ut
�
�t
�
� ut

�
rt;0
�
�t
��
:

This is the payo¤ that is obtained along the equilibrium path of (u;M) with r after

a history of shocks �t. For this direct mechanism (~u; ~M) consider the truth-telling

strategy ~r
�
�t
�
= �t. The continuation implied by ~u; ~M with strategy ~r satis�es:

~wt(�
t; �̂

t
; ~r) = wt(�̂

t
; rt;0(�̂

t
); r):

that is, ~wt is the continuation value that is obtained in the original mechanism (u;M)

with equilibrium r along the equilibrium path if the realized history of shocks equal

�̂
t
.

Finally, the equilibrium condition for ~r is,

�t~ut(�̂
t�1
; �t) + � ~wt(�

t; (�̂
t�1
; �t); ~r) � �t~ut(�̂

t�1
; �̂t) + � ~wt(�

t; (�̂
t�1
; �̂t); ~r) (19)
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for all �t; �̂
t
2 �t, which we term the incentive compatibility constraints.

The next proposition shows that this new strategy pro�le ~r is a subgame perfect

equilibrium of the simple mechanism
�
~u; ~M

�
and it achieves, by construction, the

same principal�s utility level than mechanism (u;M).

Proposition 13 The truth telling strategy ~r is an equilibrium of the direct mechanism

(~u; ~M) de�ned above.

Proof. We need to check the incentive compatibility constraints (19). By de�nition

of ~u in terms of u we have,

�t~ut(�̂
t�1
; �t)+� ~wt(�

t; (�̂
t�1
; �t); ~r) = �tut(r

t;0(�̂
t�1
; �t))+�wt((�̂

t�1
; �t); r

t;0(�̂
t�1
; �t); r)

And since the initial mechanism induced r as an equilibrium we have that,

�tut(r
t;0(�̂

t�1
; �t)) + �wt((�̂

t�1
; �t); r

t;0(�̂
t�1
; �t); r)

� �tut(r
t;0(�̂

t
)) + �wt((�̂

t�1
; �t); r

t;0(�̂
t
); r)

since rt(�̂
t
) 2 Mt(r

t�1;0(�̂
t�1
)) is a feasible message. Finally, note that by de�nition

ut(r
t;0(�̂

t
)) = ~ut(�̂

t
) and that

wt((�̂
t�1
; �t); r

t;0(�̂
t
); r) = w�t (r

t;0(�̂
t
); r) = wt(�

t; rt;0(�̂
t
); r) = ~wt(�

t; �̂
t
; r)

Combining the �rst equality, the two inequalities and these last relations leads to the

incentive compatibility constraint. �

So without loss in optimality, we can focus in simple direct mechanisms where the

agent is called to report only is current shock. This consideration lead us to write

the problem with T � 3 remaining periods and income yT recursively as follows.

vT (yT ) = max
cT ; kT

Z
[�U (cT (�)) + vT�1 (kT (�))] dF (�)

�U (cT (�)) + �vT�1 (kT (�)) � �hU(cT (�
0)) + �vT�1(kT (�

0)) for all �; �0 2 �

cT (�) + kT (�) � yT for all � 2 �
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where v2 (�) was de�ned in Section 1.

In above formulation, we make of use of the following: any feasible continuation

utility pro�le ~wT�1 (�) 2 [(T � 1)U (0) ; vT�1 (kT (�))] can be achieved by �money

burning�: setting ~wT�1 (�) = vT�1(~kT (�)) for some ~kT (�) � kT (�). Consequently,

without loss of generality we can impose ex-post optimality, that is given the resources

available the continuation utility is vT�1(~kT (�)).

For the simple recursive representation to obtain it is critical that, although the

principal and the agent disagree on the amount of discounting between the current

and next period, they both agree on the utility obtained from the next period on,

given by vT�1. This is not true in the alternative setup where the principal and the

agent both discount exponentially but with di¤erent discount factors.

6 Liquid and Illiquid Assets: Sequential Imple-

mentation

Illiquid assets have been emphasized as a commitment device that helps mitigate the

time inconsistency problem. In particular, Laibson (1997) shows that illiquid assets

are used by agents and improve welfare. Angeletos, Laibson, Repetto, Tobacman,

Weinburg (2001) numerically simulate a hyperbolic consumer�s problem that faces

shocks to income and can manage a portfolio of illiquid and liquid risk free assets.

They report that illiquid assets are an important component of wealth.

Although the commitment property of illiquid assets has been stressed, the optimal

commitment devices have not been studied and consequently the virtue of illiquid

assets as a commitment device has not been fully assessed. Surprisingly, we now

show that in our model, if assumption A holds, a combination of liquid and illiquid

assets under control of the agent can implement the optimal allocation and achieve

the optimal welfare. This result is also true with time-consistent preferences, with

and without self-control.

To establish this result we �rst establish a sequential implementation result that is

interesting in its own right: the optimal minimum savings mechanism can be modi�ed

so that the agent freely selects in each period the minimum savings requirement for

the next period (subject only to the budget constraint). This added sequential choice
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turns out not to a¤ect the allocation outcome nor the welfare obtained by it (recall

that with self-control the �rst statement does not necessarily imply the second).4

This follows from the fact that the disagreement on discounting � between selves

in the time-inconsistent framework or between the regular and temptation prefer-

ences in the time consistent framework � is limited to the current period. There is

no disagreement regarding future periods and in particular no disagreement on the

optimal minimum savings for the next period, given the saving level chosen in the

current period. Thus, the entire tension remains on the current choice between con-

sumption and savings. Thus, there is no need to commit in the initial period to future

commitment devices.

Consider the case with time-consistent self-control preferences. The dynamic pro-

gram summarizing the sequential choice problem described above is simply:

wT (y; s) = E
n
(1 + �) max

(c;k;s0)2 ~B(y;s)

�
zU (c) + �̂wT�1 (k; s

0)
�

� � max
(c;k;s0)2 ~B(y;s)

�
zU (c) + �wT�1 (k; s

0)
�o

where ~B (y; s) � f (c; k; s0) : c+ k � y; k � s; k � s0 g : Note that a choice problem

at time t is indexed now by the minimum savings requirement s for the current period

and the total amount of resources y. The choices available in the period are greater

than previously: agents choose over c and k as before, subject to the current minimum

savings requirement s and in addition select a minimum savings requirement s0 for

the next period.

In the last period, provided assumption A holds, we have that,

v2(y) = max
s2[y;1)

w2 (y; s)

by Proposition 10. That is, the optimal mechanism is the best minimum savings

rule, so the welfare values are equivalent. We now proceed by backward induction:

suppose that vT�1 (k) = maxswT�1 (y; s) ; we will prove that this implies that vT (k) =

maxswT (y; s).

4Indeed, this is true regardless of whether or not the optimal commitment device is a minimum
savings rule and is implicit in the dynamic programming formulation of previous sections. However,
here we introduce notation that allows us to stress this point for the minimum savings rule.
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Maximizing over s on both sides of (??) and performing the maximization over s0

and maximize over s to write:

max
s2[y;1)

wT (y; s) = max
s2[y;1)

E
n
(1 + �) max

(c;k)2B(y)

�
zU (c) + �̂vT�1 (k)

�

� � max
(c;k)2B(y)

�
zU (c) + �vT�1 (k)

�o

= vT (y; s)

which proves that the sequential choice problem attains the same welfare as the

optimal commitment device.

Now consider the following alternative setup where the agent has access each

period to a liquid asset, L, and an illiquid asset, I; with the following characteristics.

Both assets have the same rate of return, the only di¤erence is that the liquid asset

can be used immediately for consumption within the period. In contrast the illiquid

asset must be �sold� one period in advance and converted into liquid assets before its

value can be consumed. The budget constraints for the consumer are therefore:

ct � Lt

ct + kt+1 � kt

0 � Lt+1; It+1

Where kt = Lt+It represents total assets; while Lt and It represent the portfolio split

between liquid and illiquid assets, respectively. The consumer�s consumption, ct, is

constrained by his availability of liquid resources Lt. Thus, illiquid assets It = kt�Lt
can only be consumed by converting them �rst into liquid assets and consuming them

in the following period.

Clearly the consumer�s budget constraint ct + kt+1 � kt will always hold with

equality. Thus, for the consumer the constraints above are equivalent to:

kt+1 � It

ct + kt+1 = kt

0 � It+1
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so that the choice of illiquid assets at time t e¤ectively imposes a minimum savings

constraint for t + 1. This shows that a time-consistent consumer with self-control

will use the assets to implement the optimal allocation and achieve the optimal wel-

fare. Similar arguments establish the case without self control or time-inconsistent

preferences. We summarize these results in the following proposition.

Proposition 14 If assumption A holds, then in time consistent and time-inconsistent

models with liquid and illiquid assets the allocation and welfare are equivalent to those

with the optimal mechanism.

7 Conclusion

This paper studied the optimal trade-o¤ between commitment and �exibility in an

intertemporal consumption/saving model without insurance. In our model, agents

expect to receive relevant private information regarding their tastes which creates a

demand for �exibility. But they also expect to su¤er from temptations, and therefore

value commitment. The model combined the representation theorems of preferences

for �exibility introduced by Kreps (1979) with the preferences for commitment pro-

posed by Gul and Pesendorfer (2002) and the hyperbolic preferences.

We solved for the optimal solution that trades-o¤ commitment and �exibility by

setting up a mechanism design problem. We showed that under certain conditions

the optimal allocation takes the simple threshold form of a minimum savings require-

ment. We characterized the condition on the distribution of the shocks under which

this result holds, and showed that if this condition is not satis�ed, more complex

mechanisms might be optimal.

We showed that this optimal mechanism could be implemented sequentially with

an illiquid asset. The agent each period consumes out of his liquid holdings and

decides the portfolio shares of his savings allocated to liquid and illiquid funds for

next period. We showed that with these assets, the agent implements the optimal

allocation and obtains the optimal welfare.

Our model is open to other interpretations, discussed in Amador, Werning and

Angeletos (2003). For example, a paternalistic principal who cares about an informed
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agent but believes the agent is biased on average in his choices faces a similar trade-

o¤. We also discuss two other applications, externalities and schooling choices by

teenagers.

The problem we studied imposes a standard budget constraint, thus we abstracted

from insurance. This choice was motivated by several considerations. First, the case

without insurance is of direct relevance if insurance is not possible because of other

considerations outside the scope of our model. Second, this assumption is in keeping

with work that has studied the role of illiquid assets as commitment devices making

our work comparable to this literature.

Finally, even without temptation or time inconsistent preferences, i.e. � = 1,

constrained optimum insurance problems with private information, such as Mirrlees

(1971) and Atkeson and Lucas (1995), are nontrivial and the resulting optimal al-

locations have avoided sharp characterizations. Thus, with insurance, comparing

situations with temptation or time inconsistency to those without would be di¢cult.

In contrast, with no insurance, the optimal allocation without temptation is straight-

forward � every agent chooses their tangency point on the budget line � making the

comparison with temptation clear.

In any case, we hope that studying the case without insurance may yield insights

into the case with insurance which we leave for future research.

A Lemma of Optimality and First Order Condi-

tions

The Lemma of Optimality of Section 2 characterizes an allocation as optimal if and

only if appropriate �rst order conditions on the Lagrangian hold. This was a funda-

mental step for the results of Proposition 3. In this appendix we provide the proof of

this important Lemma.

To do this, we �rst show that the maximization of the Lagrangian is a necessary

and su¢cient condition for optimality of an allocation. This is stated in the following

two results,

Result (a�). Necessity. An allocation
�
w0; u0

�
2 � with u0 continuous is optimal if
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there exists a non-decreasing �0 such the Lagrangian is maximized at
�
w0; u0

�
2 �:

L
�
w0; u0;hw; huj�0

�
� L

�
w0; u0;w0; u0j�0

�
(20)

for all
�
hw; hu

�
2 � and hu continuous

Result (b�). Su¢ciency. If there exists a non-decreasing �0 such that for some�
w0; u0

�
2 �

L
�
w0; u0;hw; huj�0

�
� L

�
w0; u0;w0; u0j�0

�
and all

�
hw; hu

�
2 � (21)

then the allocation
�
w0; u0

�
is optimal.

Proof of Results (a�) and (b�). Our optimization problem maps into the general

problem studied in Sections 8.3-8.4 by Luenberger (1969): maxx2X Q (x) subject to

x 2 
 and G (x) 2 P , where 
 is a subset of the vector space X, Q : 
 ! R and

G : 
! Z, where Z is a normed vector space and P is a positive non-empty convex

cone in Z.

For Result (b�), set:

X = fw; u j w 2 W
�
R
+
�
and u : �! Rg


 = fw; uj w 2 W
�
R
+
�
; u : �! U

�
R
+
�
and u is non-decreasingg � �

Z =

�
z j z : �! R with sup

�2�
jz (�)j <1

�
with the norm kzk = sup

�2�
jz (�)j

P = fz j z 2 Z and z (�) � 0 for all � 2 �g

We also de�ne the objective function Q and the left hand side of the resource con-

straint G by,

Q (w; u) =
�

�
u(�) + w +

1

�

Z ��

�

[(1� F (�))� � (1� �) f (�)] u (�) d�

G (w; u) = K�1 (y � C (u (�))) +
�

�
u (�)�

�

�
u (�)� w �

Z �

�

1

�
u(~�)d~�

Result (b�) then follows immediately since the hypothesis of Theorem 1, pg. 220 in
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Luenberger (1969) are met.

For Result (a�), modify 
 and Z to require continuity of u:


 = fw; uj w 2 W
�
R
+
�
; u : �! U

�
R
+
�
and u is continuous and non-decreasingg

Z = fz j z : �! R and z is continuousg with the norm kzk = sup
�2�

jz (�)j

with X; P; Q and G as before. Note that Q and G are concave, 
 is convex, P

contains an interior point (e.g. z (�) = 1; for all � 2 �, is interior) and that the

positive dual of Z is isomorphic to the space of non-decreasing functions on � by

the Riesz Representation Theorem (see Chapter 5, pg. 113 in Luenberger (1969)).

Finally, if w0; u0 is optimal within � and w0; u0 2 �\fu is continuousg then w0; u0 is

optimal within the subset � \ fu is continuousg � 
. Result (a�) then follows since

the hypothesis of Theorem 1, pg. 217 in Luenberger (1969) are met.�

Once obtained results (a�) and (b�), to prove the Lemma of Optimality, we need

to show that the maximization conditions in (20) and (21) are equivalent to the

appropriate �rst order conditions. We �rst show that these �rst order conditions can

indeed be computed. The following Lemma helps in this.

Lemma A.1. (Di¤erentiability of integral functionals with convex inte-

grands). Given a measure space (�;�; �) and a function ' : X � � ! R; where

X � Rn, suppose the functional T : 
 ! R; where 
 is some subset of the space of

all functions mapping � into X, is given by,

T (x) =

Z

�

' (x (�) ; �)� (d�)

Suppose that (i) for each � 2 �; ' (�; �) : X ! R is concave; (ii) that the derivative

'x exists and is a continuous function of (x; �); and that (iii) x+�h 2 
 for � 2 [0; "]

for some " > 0.

Then the h-directional Gateaux di¤erential, @T (x;h) exists and is given by

@T (x;h) =

Z

�

'x (x (�) ; �)h (�)� (d�) ;

if the right hand side expression is well de�ned.
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Proof. By de�nition of Gateaux di¤erential,

@T (x;h) = lim
�#0

Z

�

1

�
[' (x (�) + �h (�) ; �)� ' (x (�) ; �)]� (d�)

=

Z

�

'x (x (�) ; �)h (�)�(d�)

+ lim
�#0

Z

�

�
1

�
[' (x (�) + �h (�) ; �)� ' (x (�) ; �)]� 'x (x (�) ; �)h (�)

�
� (d�)

We seek to show that the last term is well de�ned and vanishes.

For � < " one can show that,

����
1

�
[' (x (�) + �h (�) ; �)� ' (x (�) ; �)]� 'x (x (�) ; �)h (�)

����

�

����
1

"
[' (x (�) + "h (�) ; �)� ' (x (�) ; �)]� 'x (x (�) ; �)h (�)

���� ; (22)

by concavity of ' (�; �). Given that ' (x (�) + "h (�) ; �), ' (x (�) ; �) and 'x (x (�) ; �)h (�)

are all integrable by hypothesis then it follows that

1

"
[' (x (�) + "h (�) ; �)� ' (x (�) ; �)]� 'x (x (�) ; �)h (�)

is also integrable. Since a function is integrable if and only if its absolute value

is integrable it follows that (22) provides the required integrable bound to apply

Lebesgue�s Dominated Convergence Theorem (see Theorem 7.10, pg. 192, Stokey

and Lucas with Prescott, 1989) implying:

lim
�#0

Z

�

�
1

�
[' (x (�) + �h (�) ; �)� ' (x (�) ; �)]� 'x (x (�) ; �)h (�)

�
� (d�)

=

Z

�

�
lim
�#0

1

�
[' (x (�) + �h (�) ; �)� ' (x (�) ; �)]� 'x (x (�) ; �)h (�)

�
� (d�) = 0

where the second equality follows by de�nition of 'x. It follows that @T (x;h) =R
�
'x (x (�) ; �)h (�)� (d�). �

In our case, we can apply the lemma A.1. because the Lagrangian functional is

the sum of three terms expressible as integrals with concave di¤erentiable integrands.

The di¤erentiability of the �rst two linear terms is trivial. For the last term one

applies the lemma to the function ' (u; �) = K�1 (y � C (u)) + �
�
u, whose derivative
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'u is clearly continuous in (u; �) and hence (Borel) measurable. Since the Lagrangian

functional is de�ned over a convex cone � the hypothesis (iii) of the lemma is met

with any " � 1 for any x 2 � and h = y � x; for y 2 �.

Furthermore, in our case
R
'u (u (�) ; �)hu (�) d� (�) is well de�ned for any u and

hu such that (w; u) 2 � and (hw; hu) 2 �, for some w; hw 2 R. Since u and hu
must be non-decreasing on � they are measurable and bounded. It follows that the

composition 'u (u (�) ; �) is bounded and measurable and �nally that the product

'u (u (�) ; �)hu (�) is measurable and bounded. Finally, all measurable and bounded

functions are integrable.

These arguments establish that we can write the Gateaux di¤erential of the La-

grangian for (w; u); (hw; hu) 2 � as

@L (w; u;hw; huj�) =

�
�

�
hu (�) + hw

�
� (�) +

1

�

Z ��

�

(� (�)�G (�))hu (�) d�

+

Z ��

�

�
�

�
� (K�1)0 (y � C (u (�)))C 0 (u (�))

�
hud� (�)

which collapses to (9) at the proposed allocation.

Finally, the following Lemma, which is a simple extension of a result in Luenberger

(Lemma 1, pg. 227, 1969), allows us to characterize the maximization conditions of

the Lagrangian (obtained in results (a�) and (b�) ) by appropriate �rst-order condi-

tions.

Lemma A.2. (Optimality and �rst-order conditions) Let f be a concave

functional on P , a convex cone in X. Take x0 2 P and de�ne H (x0) � fh :

h = x � x0 and x 2 Pg: Then �f (x0; h) exists for h 2 H (x0). Assume that for

h1; h2 2 H (x0) we have that �f (x0; �1h1 + �2h2) exists and �f (x0; �1h1 + �2h2) =

�1�f (x0; h1) + �2�f (x0; h2) for all �1; �2 2 R.

A necessary and su¢cient condition that x0 2 P maximizes f is that

�f (x0; x) � 0 for all x 2 P

�f (x0; x0) = 0
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Proof. Necessity. If x0 maximizes f then for any x 2 P then ((1� �) x0 + �x) 2 P

for � 2 (0; 1) since P is convex and therefore,

0 � f (x0 + � (x� x0))� f (x0)

dividing by � and taking limits, which exists due to the concavity of f; we obtain:

lim
�#0

f (x0 + � (x� x0))� f (x0)

�
= �f (x0; x� x0) � 0

Setting x = 2x0 2 P (since P is a cone) then �f (x0; x0) exists and

�f (x0; x0) � 0 (23)

Since whenever �f (x0;h) exists then �f (x0;�h) exists for all � 2 R and �f (x0;�h) =

��f (x0;h). Now take x = x0=2 2 P (since P is a cone) then �f (x0;�x0=2) exists

and using � = �2 it follows that �f (x0; x0) = �2�f (x0;�x0=2), implying:

�f (x0;�x0=2) = ��f (x0; x0) =2 � 0

Implying:

�f (x0; x0) � 0: (24)

Combining (23) and (24) we obtain:

�f (x0; x0) = 0: (25)

From (23) and (25) we obtain that:

�f (x0; x� x0) = �f (x0; x) + �f (x0;�x0)

= �f (x0; x)� �f (x0; x0)

= �f (x0; x) � 0

The �rst step is warranted since we assume that if h1 2 P and �h2 2 P then

�f (x0;h2) exists and �f (x0;h1 + h2) = �f (x0;h1) + �f (x0;h2).
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Su¢ciency. For x0; x 2 P and � 2 (0; 1) concavity of f implies that:

f (x0 + � (x� x0)) � f (x0) + �(f (x)� f (x0))

or

f (x)� f (x0) �
1

�
[f (x0 + � (x� x0))� f (x0)]

as � # 0 then:

f (x)� f (x0) � �f (x0; x� x0) (26)

It follows that if

�f (x0; x) � 0 for all x 2 P

�f (x0; x0) = 0

then using (26):

f (x)� f (x0) � �f (x0; x� x0)

= �f (x0; x)� �f (x0; x0) � 0

where the equality follows from the hypothesis of linearity of �f: �

All the hypothesis of Lemma A.2 are met for the Lagrangian in our case because it

is a convex functional over a convex cone and Lemma A.1 veri�es the di¤erentiability

requirement, as discussed above. Thus, we obtain that a necessary and su¢cient

condition for the Lagrangian to be maximized at
�
u0; w0

�
over � is that

@L
�
w0; u0;w0; u0j�0

�
= 0

@L
�
w0; u0;hw; huj�0

�
� 0

for all (hw; hu) 2 �.

Given results (a�) and (b�), the proof of the Lemma of Optimality follows.
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B Proof of Proposition 6

Suppose that we are o¤ering a segment of the budget line between the tangency point

for �L and that of �H ; with associated allocation cL and cH . De�ne the �
� that is

indi¤erent from the allocation cL and cH then �� 2 (�L; �H) for �H > �L. Upon

removing the interval � 2 (��; �H) types move to cH and � 2 (�L; �
�) types move to

cL allocation.

Let�(�H ; �L) be the change in utility for the principal of such a move (normalizing

income to y = 1 for simplicity)

�(�H ; �L) �

Z �H

��(�H ;�L)

f�U (c� (�H)) +W (y � c� (�H))g f (�) d�

+

Z ��(�H ;�L)

�L

f�U (c� (�L)) +W (y � c� (�L))g f (�) d�

�

Z �H

�L

f�U (c� (�)) +W (y � c� (�))g f (�) d�

where the function c� (�) is de�ned implicitly by

�U 0 [c� (�)] = �W 0 (y � c� (�)) (27)

and �� (�H ; �L) is then de�ned by

�� (�H ; �L)U (c
� (�H)) + �W (y � c� (�H)) (28)

= �� (�H ; �L)U (c
� (�L)) + �W (y � c� (�L))

Notice that �(�L; �L) = 0:

The following lemma regarding the partial derivative of �(�H ; �L) is used below.

Lemma. The partial of �(�H ; �L) with respect to �H can be expressed as:

@�

@�H
(�H ; �L) = S (�H ; �

�)
U 0 (c� (�H))

�

@c� (�H)

@�H

where S (�; ��) is de�ned by,
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S (�; ��) � (y � �) (� � ��) ��f (��)�

Z �

��

�
� � �~�

�
f
�
~�
�
d~�

Since U 0 (c� (�H)) > 0 and
@c�(�H)
@�H

> 0, then sign (�1) = sign (S (�H ; �
�)) :

Proof. We have

�1 (�H ; �L) = [�HU (c
� (�H)) +W (y � c� (�H))] f (�H)

� [�� (�H ; �L)U (c
� (�H)) +W (y � c� (�H))] f (�

�)
@��

@�H

+

Z �H

��(�H ;�L)

f�U 0 (c� (�H))�W
0 (y � c� (�H))g f (�)

@c� (�H)

@�H
d�

+ f�� (�H ; �L)U (c
� (�L)) +W (y � c� (�L))g f (�

�)
@��

@�H

� [�HU (c
� (�H)) +W (y � c� (�H)) f (�H)]

Combining terms,

�1 (�H ; �L) =

�Z �H

��(�H ;�L)

f�U 0 (c� (�H))�W
0 (y � c� (�H))g f (�) d�

�
@c� (�H)

@�H

+ f�� (�H ; �L) [U (c
� (�L))� U (c

� (�H))] +W (y � c� (�L))�W (y � c� (�H))g f (�
�)
@��

@�H

Now, from (28) we have

�U 0 [c� (�)]�W 0 (y � c� (�)) =

�
� � 1

�

�
�U 0 [c� (�)]

Substituting above

�1 (�H ; �L) =

�Z �H

��(�H ;�L)

�
� �

1

�
�H

�
f (�) d�

�
U 0 (c� (�H))

@c� (�H)

@�H

+ f�� (�H ; �L) [U (c
� (�L))� U (c

� (�H))] +W (y � c� (�L))�W (y � c� (�H))g f (�
�)
@��

@�H
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we also have that from (27)

�
�� (�H ; �L)

�
[U (c� (�L))� U (c

� (�H))] = fW (y � c� (�L))�W (y � c� (�H))g

So,

�1 (�H ; �L) =

��
1

�
� 1

�
��f (��)

�
[U (c� (�H))� U (c

� (�L))]
@��

@�H

�

�Z �H

��

�
1

�
�H � �

�
f (�) d�

�
U 0 (c� (�H))

@c� (�H)

@�H

Di¤erentiating (28) we obtain:

@��

@�H
[U (c� (�H))� U (c

� (�L))] = � [�
�U 0 (c� (�H))� �W

0 (y � c� (�H))]
@c� (�H)

@�H

Using the fact that �U 0 [c� (�)]� �W 0 (1� c� (�)) = 0 this implies

@��

@�H
[U (c� (�H))� U (c

� (�L))] = [�H � �
�]U 0 [c� (�H)]

@c� (�H)

@�H

Substituting back the result follows. �

From the lemma we only need to sign S (�H ; �
�). Clearly, S (��; ��) = 0. Taking

derivatives we also get that

@S (�; ��)

@�
= [1� �] ��f (��)� (1� �) �f (�)�

Z �

��
f
�
~�
�
d~�

Notice that
@S (�; ��)

@�

����
��
= 0

@2S (�; ��)

(@�)2
= � (2� �) f (�)� (1� �) �f 0 (�)

Note that @2S (�; ��) = (@�)2 does not depend on ��; just on �. It follows that sign
�
@2S(�;��)

(@�)2

�
�

0 if and only if
�f 0 (�)

f (�)
� �

2� �

1� �
(29)
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That is, if A holds. Integrating @2S (�; ��) = (@�)2 twice:

S (�H ; �
�) =

Z �H

��

Z �

��

@2S
�
~�; ��

�

�
@~�
�2 d~�d�

Thus S (�H ; �
�) � 0 if A holds.

This implies then that �1 (�; �L) � 0 for all � � �L if assumption A holds; and

�(�H ; �L) =

Z �H

�L

�1 (�; �L) d�

so that
�f 0 (�)

f (�)
� �

2� �

1� �
) �(�H ; �L) � 0 ; for all �H and �L

and clearly �L 2 argmax�H��L �(�H ; �L) : In other words if assumption A holds then

punching holes into any o¤ered interval is not an improvement.

The converse is also true: if A does not hold for some open interval � 2 (�1; �2)

then the previous calculations show that it is an improvement to remove the whole

interval. In other words,

(�1; �2) 2 arg max
�L;�H

�(�H ; �L)

s.t. �1 � �L � �H � �2

This concludes the proof. �

C Proof of Lemma A implies B

Let � = 1
"
> 0 then assumption B is equivalent to

� (�; ") � (1 + ")
�
�̂ (") =�

�2
f
�
��̂ (") =�

�
� f (�) � 0
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with �̂ (") = (� + ") = (1 + "). Note that � (�; 0) = 0,

�" (�; ") =
�̂
2

�2
f
�
��̂=�

�
+
1 + "

�2

�
2�̂f

�
��̂=�

�
+ �̂

2
f 0
�
��̂=�

�
�=�
�
�̂
0
(") ;

and �̂
0
(") = (1� �) = (1 + ")2. Thus:

�" (�; ") =
�̂

1 + "

1

�2

�
(2� � + ") f

�
��̂=�

�
+ (1� �) f 0

�
��̂=�

�
��̂=�

�

assumption A holding at �̂ implies that (2� �) f(�̂)+(1� �) f 0(�̂)�̂ � 0. This implies

(2� � + ") f(�̂) + (1� �) f 0(�̂)�̂ � 0 for " � 0. So if the condition in assumption A

holds for [�; �p�̂=�] then �" (�; ") � 0 for all " � 0 and � 2 [�̂; �p]. Given that

� (�; 0) = 0, we have that if A holds for [�; �p�̂=�], then

� (�; ") = � (�; 0) +

Z "

0

�" (�; ~") d~" � 0

for � 2 [�̂; �p] so that assumption B holds. �
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